The Cystine Knot Is Responsible for the Exceptional Stability of the Insecticidal Spider Toxin ω-Hexatoxin-Hv1a
نویسندگان
چکیده
The inhibitor cystine knot (ICK) is an unusual three-disulfide architecture in which one of the disulfide bonds bisects a loop formed by the two other disulfide bridges and the intervening sections of the protein backbone. Peptides containing an ICK motif are frequently considered to have high levels of thermal, chemical and enzymatic stability due to cross-bracing provided by the disulfide bonds. Experimental studies supporting this contention are rare, in particular for spider-venom toxins, which represent the largest diversity of ICK peptides. We used ω-hexatoxin-Hv1a (Hv1a), an insecticidal toxin from the deadly Australian funnel-web spider, as a model system to examine the contribution of the cystine knot to the stability of ICK peptides. We show that Hv1a is highly stable when subjected to temperatures up to 75 °C, pH values as low as 1, and various organic solvents. Moreover, Hv1a was highly resistant to digestion by proteinase K and when incubated in insect hemolymph and human plasma. We demonstrate that the ICK motif is essential for the remarkable stability of Hv1a, with the peptide's stability being dramatically reduced when the disulfide bonds are eliminated. Thus, this study demonstrates that the ICK motif significantly enhances the chemical and thermal stability of spider-venom peptides and provides them with a high level of protease resistance. This study also provides guidance to the conditions under which Hv1a could be stored and deployed as a bioinsecticide.
منابع مشابه
Fusion to Snowdrop Lectin Magnifies the Oral Activity of Insecticidal ω-Hexatoxin-Hv1a Peptide by Enabling Its Delivery to the Central Nervous System
BACKGROUND The spider-venom peptide ω-hexatoxin-Hv1a (Hv1a) targets insect voltage-gated calcium channels, acting directly at sites within the central nervous system. It is potently insecticidal when injected into a wide variety of insect pests, but it has limited oral toxicity. We examined the ability of snowdrop lectin (GNA), which is capable of traversing the insect gut epithelium, to act as...
متن کاملNovel biopesticide based on a spider venom peptide shows no adverse effects on honeybees
Evidence is accumulating that commonly used pesticides are linked to decline of pollinator populations; adverse effects of three neonicotinoids on bees have led to bans on their use across the European Union. Developing insecticides that pose negligible risks to beneficial organisms such as honeybees is desirable and timely. One strategy is to use recombinant fusion proteins containing neuroact...
متن کاملIsolation of an Orally Active Insecticidal Toxin from the Venom of an Australian Tarantula
Many insect pests have developed resistance to existing chemical insecticides and consequently there is much interest in the development of new insecticidal compounds with novel modes of action. Although spiders have deployed insecticidal toxins in their venoms for over 250 million years, there is no evolutionary selection pressure on these toxins to possess oral activity since they are injecte...
متن کاملJuruin: an antifungal peptide from the venom of the Amazonian Pink Toe spider, Avicularia juruensis, which contains the inhibitory cystine knot motif
The aim of this study was to screen the venom of the theraposid spider Avicularia juruensis for the identification of antimicrobial peptides (AMPs) which could be further used as prototypes for drug development. Eleven AMPs, named juruentoxins, with molecular weight ranging from 3.5 to 4.5 kDa, were identified by mass spectrometry after the soluble venom was separated by high performance liquid...
متن کاملA Proteomics and Transcriptomics Investigation of the Venom from the Barychelid Spider Trittame loki (Brush-Foot Trapdoor)
Although known for their potent venom and ability to prey upon both invertebrate and vertebrate species, the Barychelidae spider family has been entirely neglected by toxinologists. In striking contrast, the sister family Theraphosidae (commonly known as tarantulas), which last shared a most recent common ancestor with Barychelidae over 200 million years ago, has received much attention, accoun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2015